A Strong Szegő Theorem for Jacobi Matrices
نویسنده
چکیده
We use a classical result of Gollinski and Ibragimov to prove an analog of the strong Szegő theorem for Jacobi matrices on l2(N). In particular, we consider the class of Jacobi matrices with conditionally summable parameter sequences and find necessary and sufficient conditions on the spectral measure such that ∑ ∞ k=n bk and ∑ ∞ k=n(a 2 k − 1) lie in l2 1, the linearly-weighted l2 space.
منابع مشابه
Sum Rules and the Szegő Condition for Orthogonal Polynomials on the Real Line
We study the Case sum rules, especially C0, for general Jacobi matrices. We establish situations where the sum rule is valid. Applications include an extension of Shohat’s theorem to cases with an infinite point spectrum and a proof that if lim n(an− 1) = α and lim nbn = β exist and 2α < |β|, then the Szegő condition fails.
متن کاملJost functions and Jost solutions for Jacobi matrices, I. A necessary and sufficient condition for Szegő asymptotics
We provide necessary and sufficient conditions for a Jacobi matrix to produce orthogonal polynomials with Szegő asymptotics off the real axis. A key idea is to prove the equivalence of Szegő asymptotics and of Jost asymptotics for the Weyl solution. We also prove L2 convergence of Szegő asymptotics on the spectrum.
متن کاملFinite Gap Jacobi Matrices, Ii. the Szegő Class
Let e ⊂ R be a finite union of disjoint closed intervals. We study measures whose essential support is e and whose discrete eigenvalues obey a 1/2-power condition. We show that a Szegő condition is equivalent to lim sup a1 · · · an cap(e) > 0 (this includes prior results of Widom and Peherstorfer–Yuditskii). Using Remling’s extension of the Denisov–Rakhmanov theorem and an analysis of Jost func...
متن کاملBound States and the Szegő Condition for Jacobi Matrices and Schrödinger Operators
For Jacobi matrices with an 1⁄4 1þ ð 1Þan g; bn 1⁄4 ð 1Þbn g; we study bound states and the Szeg + o condition. We provide a new proof of Nevai’s result that if g4 2 ; the Szeg + o condition holds, which works also if one replaces ð 1Þ by cos ðmnÞ: We show that if a 1⁄4 0; ba0; and go1 2 ; the Szeg + o condition fails. We also show that if g 1⁄4 1; a and b are small enough (b þ 8a2o 1 24 will d...
متن کاملTitchmarsh theorem for Jacobi Dini-Lipshitz functions
Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006